Smart Grid, Smart Business?

Mort Cohen, MBA

<u>RevGen Group</u>

Mort.Cohen@RevGenGroup.com

In this presentation:

- The Promise of the Smart Grid
- Market Drivers
- Applications, Benefits and Challenges
- Outlook for Adoption
- Summary
- RevGen Services

The Promise of the Smart Grid

- Accommodates future demand
- Integrates distributed energy sources (solar, wind, fuel cells) and new storage options (electric vehicles)
- Adds intelligence to improve reliability and quality of delivered power
- Increases responsiveness through self-healing features
- Enables consumers to manage energy usage
- Provides communication platform for new applications
- Protects against cyber attack or natural disaster
- Improves operational efficiency of existing grid

Market Drivers

Increased Energy Demand

 Peak energy increase required to power industrial growth, expanding populations, and introduction of electric cars

Economic Factors

- Rising asset costs such as capital, raw materials, and labor
- Increasing costs to support aging power infrastructure

Policy and Regulation

- Renewable portfolio standards spurring use of distributed renewable power sources
- Government incentives to pursue an upgrade to the grid

Greenhouse Gas Reductions

- Deliver reductions through peak load shifting and end user conservation
- Enable reductions through increased use of renewable energy

Energy Security

- Reduced dependence on foreign energy sources
- Technology Advancement
 - Top tier IT, software, and hardware companies beginning to adapt technologies for the Smart Grid

Applications, Benefits and Challenges

Application	Benefits	Challenges
Advanced Metering: Managed energy usage through dynamic monitoring of two-way power metering	 Better usage of existing power generation Reduced peak power demand Potential cost savings for consumer and provider 	 Requires new utility business model that promotes energy efficiency Consumer uptake of new metering capabilities is uncertain New communication architecture required to maximize benefits
Demand Response: Utility/user collaboration to reduce energy demand during peak usage periods	 Fewer natural gas peak power plants potentially reducing carbon emissions Customers use less energy through incentivized usage patterns 	 Smart meters and communications upgrade necessary to automate demand response Success depends on unpredictable adoption rate by consumers
Grid Optimization: Digital control of the power delivery network	 Increased grid reliability, efficiency, security and near real-time response to grid problems ROI should be predictable and is not dependent on changing consumer behavior 	 Implementation involves expensive addition of sensors, communications infrastructure, and IT functions
Distributed Generation and Storage: Seamlessly integrating renewable energy sources and new storage technologies on to the grid	 Enables wide-scale deployment of renewable energy sources or fuel cell power generation at users' facilities Localized storage could decrease the need for building new power plants and new transmission lines 	 Requires new utility business model that moves away from centralized power to supporting distributed power sources Integration of large numbers of distributed sources requires complex load management and control
Energy Monitoring and Control: System-wide ability to manage network assets and respond to dynamic metering capabilities	 More efficient use of delivered power Rapid response to outages; self-healing capabilities to permit rerouting of power 	 Requires implementing enterprise-wide systems that share data across all applications and systems

Outlook for Adoption

Opportunities

- Small regional smart grid demonstrations indicate up to 15% reduction in peak load, >25% reduction in total load, and >25% reduction in outage minutes
- Optimized grid architecture should reduce the number of new power plants that must be built
- Smart Grid has the potential to be a growth engine for high technology companies (IT hardware and software, wireless communications, sensors)
- Projected creation of >250,000 new jobs over the next 4 years

Obstacles

- Interoperability standards needed for plug and play compatibility throughout the grid network
- Business models and incentives must change from profitably delivering power to encouraging conservation
- Large numbers of new distributed energy sources must be integrated
- Uncertain consumer acceptance of smart grid services
- Must deploy complex, new system architectures

Summary

- Smart Grid has the potential to be a major new technology initiative in the US
 - EPRI estimates full deployment of the Smart Grid could cost \$165B over the next 20 years
- Staged rollout of the Smart Grid over an extended period is likely due to the conservative nature of the industry
 - Advanced metering techniques are getting the most media play, but demand response may be the first capability to be deployed
- Although significant opportunity exists in this market, the key obstacles are a lack of a uniform vision of its structure and the need for establishing interoperability standards
- Utility mindset change is essential
 - Incentivize conservation rather than power consumption
 - Embrace and invest in non-traditional power and grid technologies
- Rollout of the Smart Grid will be a key enabler for the growth of renewable energy and distributed power in the US

Email Mort Cohen for more detailed analysis and insights of the Smart Grid Market

Go to RevGen Group Web Site

The RevGen Group assists high technology clients to:

- Bring products to market and through life-cycle transitions
- Develop strategies based on objective, customized intelligence
- Perform technology assessment and validation
- Manage due diligence

Fields of expertise:

- Solar energy
- Smart grid
- Wireless communications
- PC software, Web 2.0, enterprise networking
- Semiconductor equipment and technology

We deliver:

- Advice, strategies, models and tools, alternatives
- Research, analysis, evaluation, validation
- Operational assistance